Weak and strong stabilization for time-delay semi-linear systems governed by constrained feedback control
dc.citation.epage | 637 | |
dc.citation.issue | 4 | |
dc.citation.spage | 627 | |
dc.contributor.affiliation | Університет Хасана II Касабланки | |
dc.contributor.affiliation | Hassan II University of Casablanca | |
dc.contributor.author | Бенсліман, Й. | |
dc.contributor.author | Дельбоу, А. | |
dc.contributor.author | Ель Амрі, Г. | |
dc.contributor.author | Benslimane, Y. | |
dc.contributor.author | Delbouh, A. | |
dc.contributor.author | El Amri, H. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2023-11-01T07:49:45Z | |
dc.date.available | 2023-11-01T07:49:45Z | |
dc.date.created | 2021-03-01 | |
dc.date.issued | 2021-03-01 | |
dc.description.abstract | У цій роботі розглядається питання слабкої та сильної стабілізації розподілених напівлінійних систем із часовою затримкою з використанням керування з обмеженим зворотним зв’язком. Результати для напівлінійних систем без запізнювання узагальнені для випадків сильної та слабкої стабілізації. Розглянуто ілюстративні приклади застосування методу до гіперболічних та параболічних рівнянь. | |
dc.description.abstract | This paper is concerned with the issue of weak and strong stabilization for distributed semi-linear systems with time delay using a constrained feedback control. The results of the semi-linear systems without delay are generalized for strong and weak stabilization cases. Illustrating applications to hyperbolic and parabolic equations are considered. | |
dc.format.extent | 627-637 | |
dc.format.pages | 11 | |
dc.identifier.citation | Benslimane Y. Weak and strong stabilization for time-delay semi-linear systems governed by constrained feedback control / Y. Benslimane, A. Delbouh, H. El Amri // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 627–637. | |
dc.identifier.citationen | Benslimane Y. Weak and strong stabilization for time-delay semi-linear systems governed by constrained feedback control / Y. Benslimane, A. Delbouh, H. El Amri // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 4. — P. 627–637. | |
dc.identifier.doi | 10.23939/mmc2021.04.627 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60452 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 4 (8), 2021 | |
dc.relation.references | [1] Ball J., Slemrod M. Feedback stabilization of distributed semilinear control systems. Applied Mathematics and Optimization. 5, 169–179 (1979). | |
dc.relation.references | [2] Berrahmoune L. Stabilization and decay estimate for distributed bilinear systems. Systems & Control Letters. 36 (3), 167–171 (1999). | |
dc.relation.references | [3] Engel K. J., Nagel R. One-Parameter Semigroups for Linear Evolution Equations. New York, Springer (2000). | |
dc.relation.references | [4] Ouzahra M. Strong stabilization with decay estimate of semilinear systems. Systems & Control Letters. 57 (10), 813–815 (2008). | |
dc.relation.references | [5] Pazy A. Semi-groups of linear operators and applications to partial differential equations. New York, Springer Verlag (1983). | |
dc.relation.references | [6] Tsouli A., Benslimane Y. Stabilization for distributed semilinear systems governed by optimal feedback control. International Journal of Dynamics and Control. 7, 510–524 (2019). | |
dc.relation.references | [7] Tsouli A., El Houch A., Benslimane Y., Attioui A. Feedback stabilisation and polynomial decay estimate for time delay bilinear systems. International Journal of Control. 1–7 (2019). | |
dc.relation.references | [8] Wu J. Theory and Applications of Partial Functional Differential Equations. Berlin, Springer Verlag (1996). | |
dc.relation.referencesen | [1] Ball J., Slemrod M. Feedback stabilization of distributed semilinear control systems. Applied Mathematics and Optimization. 5, 169–179 (1979). | |
dc.relation.referencesen | [2] Berrahmoune L. Stabilization and decay estimate for distributed bilinear systems. Systems & Control Letters. 36 (3), 167–171 (1999). | |
dc.relation.referencesen | [3] Engel K. J., Nagel R. One-Parameter Semigroups for Linear Evolution Equations. New York, Springer (2000). | |
dc.relation.referencesen | [4] Ouzahra M. Strong stabilization with decay estimate of semilinear systems. Systems & Control Letters. 57 (10), 813–815 (2008). | |
dc.relation.referencesen | [5] Pazy A. Semi-groups of linear operators and applications to partial differential equations. New York, Springer Verlag (1983). | |
dc.relation.referencesen | [6] Tsouli A., Benslimane Y. Stabilization for distributed semilinear systems governed by optimal feedback control. International Journal of Dynamics and Control. 7, 510–524 (2019). | |
dc.relation.referencesen | [7] Tsouli A., El Houch A., Benslimane Y., Attioui A. Feedback stabilisation and polynomial decay estimate for time delay bilinear systems. International Journal of Control. 1–7 (2019). | |
dc.relation.referencesen | [8] Wu J. Theory and Applications of Partial Functional Differential Equations. Berlin, Springer Verlag (1996). | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2021 | |
dc.subject | напівлінійна система | |
dc.subject | стабілізація зі зворотним зв’язком | |
dc.subject | оцінка розпаду полінома | |
dc.subject | запізнювання | |
dc.subject | semi-linear system | |
dc.subject | feedback stabilization | |
dc.subject | polynomial decay estimate | |
dc.subject | time delay | |
dc.title | Weak and strong stabilization for time-delay semi-linear systems governed by constrained feedback control | |
dc.title.alternative | Слабка та сильна стабілізація напівлінійних систем із запізнюванням, керованих обмеженим зворотним зв’язком | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1