Microscopic theory of the influence of dipole superparamagnetics (type hβ − CDhFeSO4ii) on current flow in semiconductor layered structures (type GaSe, InSe)

dc.citation.epage105
dc.citation.issue1
dc.citation.spage89
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationІнститут фізики конденсованих систем НАН України
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationInstitute for Condensed Matter Physics of NAS of Ukraine
dc.contributor.authorКостробій, П. П.
dc.contributor.authorІващишин, Ф. О.
dc.contributor.authorМаркович, Б. М.
dc.contributor.authorТокарчук, Михайло Васильович
dc.contributor.authorKostrobij, P. P.
dc.contributor.authorIvashchyshyn, F. O.
dc.contributor.authorMarkovych, B. M.
dc.contributor.authorTokarchuk, M. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-10-03T09:31:50Z
dc.date.available2023-10-03T09:31:50Z
dc.date.created2021-03-01
dc.date.issued2021-03-01
dc.description.abstractЗапропоновано статистичний підхід опису процесів переносу носіїв заряду у гібридних наноструктурах з врахуванням електромагнітних полів із застосуванням методу нерівноважного статистичного оператора Зубарєва. Отримано узагальнені рівняння переносу, які описують немарковські процеси переносу заряду у системі з врахуванням магнітних та поляризаційних процесів під впливом зовнішніх та індукованих внутрішніх електромагнітних полів. Розглянуто слабо нерівноважні процеси переносу заряду у наноструктурах та отримано нерівноважний статистичний оператор, за допомогою якого записано магніто-дифузійні рівняння переносу для електронів у шаруватих наноструктурах. Отримано узагальнене рівняння дифузії типу Кеттано у часових дробових похідних для електронів з характерним часом релаксації та запропоновано узагальнену модель, що враховує складність релаксаційних електро-магнііто дифузійних процесів для електронів у шаруватих наноструктурах.
dc.description.abstractA statistical approach to description of the charge carrier transfer processes in hybrid nanostructures taking into account electromagnetic fields is proposed using the method of the nonequilibrium statistical operator Zubarev. Generalized transfer equations are obtained, which describe non-Markov processes of charge transfer in the system taking into account magnetic and polarization processes under the influence of external and induced internal electromagnetic fields. Weakly nonequilibrium charge transfer processes in nanostructures are considered, and a nonequilibrium statistical operator is obtained, by means of which the magneto-diffusion transfer equations for electrons in layered nanostructures are obtained. A generalized Cattaneo-type diffusion equation in time fractional derivatives is obtained for electrons with a characteristic relaxation time and a generalized model is proposed that takes into account the complexity of relaxation electro-magnetic diffusion processes for electrons in layered nanostructures.
dc.format.extent89-105
dc.format.pages17
dc.identifier.citationMicroscopic theory of the influence of dipole superparamagnetics (type hβ − CDhFeSO4ii) on current flow in semiconductor layered structures (type GaSe, InSe) / P. P. Kostrobij, F. O. Ivashchyshyn, B. M. Markovych, M. V. Tokarchuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 1. — P. 89–105.
dc.identifier.citationenMicroscopic theory of the influence of dipole superparamagnetics (type hβ − CDhFeSO4ii) on current flow in semiconductor layered structures (type GaSe, InSe) / P. P. Kostrobij, F. O. Ivashchyshyn, B. M. Markovych, M. V. Tokarchuk // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 8. — No 1. — P. 89–105.
dc.identifier.doidoi.org/10.23939/mmc2021.01.089
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60333
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (8), 2021
dc.relation.references[1] Chabecki P., Calus D., Ivashchyshyn F., Pidluzhna A., Hryhorchak O., Bordun I., Makarchuk O., Kityk A. V. Function Energy Accumulation Photo- and Magnetosensitive Hybridity in the GaSe-Based Hierarchical Structures. Energies. 13 (17), 4321 (2020).
dc.relation.references[2] Grygorchak I., Calus D., Pidluzhna A., Ivashchyshyn F., Hryhorchak O., Chabecki P., Shvets R. Thermogalvanic and local field effects in SiO2hSmCl3i structure. Applied Nanoscience. 10 (12), 4725–4731 (2020).
dc.relation.references[3] Klapchuk M. I., Ivashchyshyn F. O. Giant magnetoresistance effect in InSe hβ−CDhFeSO4ii clatrate. Mathematical Modeling and Computing. 7 (2), 322–333 (2020).
dc.relation.references[4] Grygorchak I. I., Kostrobiy P. P., Stasyuk I. V., et al. Fizychni protsesy ta yikh mikroskopichni modeli v periodychnykh neorhanichno/orhanichnykh klatratakh. Lviv, Rastr-7 (2015), (in Ukrainian).
dc.relation.references[5] Kostrobij P. P., Grygorchak I. I., Ivaschyshyn F. O., Markovych B. M., Viznovych O. V., Tokarchuk M. V. Mathematical modeling of subdiffusion impedance in multilayer nanostructures. Mathematical Modeling and Computing. 2 (2), 154–159 (2015).
dc.relation.references[6] Kostrobij P., Grygorchak I., Ivashchyshyn F., Markovych B., Viznovych O., Tokarchuk M. Generalized Electrodiffusion Equation with Fractality of Space–Time: Experiment and Theory. Journal of Physical Chemistry A. 122 (16), 4099–4110 (20
dc.relation.references[7] Kostrobij P. P., Markovych B. M., Viznovych O. V., Tokarchuk M. V. Generalized transport equation with nonlocality of space–time. Zubarev’s NSO method. Physica A: Statistical Mechanics and its Applications. 514, 63–70 (2019).
dc.relation.references[8] Sibatov R. T., Uchaikin V. V. Fractional differential approach to dispersive transport in semiconductors. Physics-Uspekhi. 52 (10), 1019–1043 (2009).
dc.relation.references[9] Sibatov R. T. Drobno-differencial’naja teorija anomal’noj kinetiki nositelej zarjada v neuporjadochennyh poluprovodnikovyh sistemah. Thesis for the Degree of Doctor of Sciences in Physics and mathematics. Uljanovsk (2012), (in Russian).
dc.relation.references[10] Rekhviashvili S. S., Mamchuev M. O., Mamchuev M. O. Model of diffusion-drift charge carrier transport in layers with a fractal structure. Physics of the Solid State. 58 (4), 788–791 (2016).
dc.relation.references[11] Rekhviashvili S. S., Alikhanov A. A. Simulation of drift-diffusion transport of charge carriers in semiconductor layers with a fractal structure in an alternating electric field. Semiconductors. 51 (6), 755–759 (2017).
dc.relation.references[12] Uchaikin V. V. Fractional Derivatives Method. Uljanovsk, Artishock-Press (2008), (in Russian).
dc.relation.references[13] Klafter J., Lim S. C., Metzler R. Fractional dynamics: recent advances. New Jersey, World Scientific (2012).
dc.relation.references[14] Zubarev D. N. Modern methods of the statistical theory of nonequilibrium processes. Journal of Soviet Mathematics. 16 (6), 1509–1571 (1981).
dc.relation.references[15] Kostrobij P. P., Tokarchuk M. V., Markovych B. M., Ihnatiuk V. V., Hnativ B. V. Reaktsiino-dyfuziini protsesy v systemakh “metal–gaz”. Lviv, Lviv Polytechnic National University (2009), (in Ukrainian).
dc.relation.references[16] Kostrobij P. P., Markovych B. M., Tokarchuk M. V. Generalized diffusion equation with nonlocality of space-time. Memory function modelling. Condens. Matter Phys. 23 (2), 23003 (2020).
dc.relation.referencesen[1] Chabecki P., Calus D., Ivashchyshyn F., Pidluzhna A., Hryhorchak O., Bordun I., Makarchuk O., Kityk A. V. Function Energy Accumulation Photo- and Magnetosensitive Hybridity in the GaSe-Based Hierarchical Structures. Energies. 13 (17), 4321 (2020).
dc.relation.referencesen[2] Grygorchak I., Calus D., Pidluzhna A., Ivashchyshyn F., Hryhorchak O., Chabecki P., Shvets R. Thermogalvanic and local field effects in SiO2hSmCl3i structure. Applied Nanoscience. 10 (12), 4725–4731 (2020).
dc.relation.referencesen[3] Klapchuk M. I., Ivashchyshyn F. O. Giant magnetoresistance effect in InSe hb−CDhFeSO4ii clatrate. Mathematical Modeling and Computing. 7 (2), 322–333 (2020).
dc.relation.referencesen[4] Grygorchak I. I., Kostrobiy P. P., Stasyuk I. V., et al. Fizychni protsesy ta yikh mikroskopichni modeli v periodychnykh neorhanichno/orhanichnykh klatratakh. Lviv, Rastr-7 (2015), (in Ukrainian).
dc.relation.referencesen[5] Kostrobij P. P., Grygorchak I. I., Ivaschyshyn F. O., Markovych B. M., Viznovych O. V., Tokarchuk M. V. Mathematical modeling of subdiffusion impedance in multilayer nanostructures. Mathematical Modeling and Computing. 2 (2), 154–159 (2015).
dc.relation.referencesen[6] Kostrobij P., Grygorchak I., Ivashchyshyn F., Markovych B., Viznovych O., Tokarchuk M. Generalized Electrodiffusion Equation with Fractality of Space–Time: Experiment and Theory. Journal of Physical Chemistry A. 122 (16), 4099–4110 (20
dc.relation.referencesen[7] Kostrobij P. P., Markovych B. M., Viznovych O. V., Tokarchuk M. V. Generalized transport equation with nonlocality of space–time. Zubarev’s NSO method. Physica A: Statistical Mechanics and its Applications. 514, 63–70 (2019).
dc.relation.referencesen[8] Sibatov R. T., Uchaikin V. V. Fractional differential approach to dispersive transport in semiconductors. Physics-Uspekhi. 52 (10), 1019–1043 (2009).
dc.relation.referencesen[9] Sibatov R. T. Drobno-differencial’naja teorija anomal’noj kinetiki nositelej zarjada v neuporjadochennyh poluprovodnikovyh sistemah. Thesis for the Degree of Doctor of Sciences in Physics and mathematics. Uljanovsk (2012), (in Russian).
dc.relation.referencesen[10] Rekhviashvili S. S., Mamchuev M. O., Mamchuev M. O. Model of diffusion-drift charge carrier transport in layers with a fractal structure. Physics of the Solid State. 58 (4), 788–791 (2016).
dc.relation.referencesen[11] Rekhviashvili S. S., Alikhanov A. A. Simulation of drift-diffusion transport of charge carriers in semiconductor layers with a fractal structure in an alternating electric field. Semiconductors. 51 (6), 755–759 (2017).
dc.relation.referencesen[12] Uchaikin V. V. Fractional Derivatives Method. Uljanovsk, Artishock-Press (2008), (in Russian).
dc.relation.referencesen[13] Klafter J., Lim S. C., Metzler R. Fractional dynamics: recent advances. New Jersey, World Scientific (2012).
dc.relation.referencesen[14] Zubarev D. N. Modern methods of the statistical theory of nonequilibrium processes. Journal of Soviet Mathematics. 16 (6), 1509–1571 (1981).
dc.relation.referencesen[15] Kostrobij P. P., Tokarchuk M. V., Markovych B. M., Ihnatiuk V. V., Hnativ B. V. Reaktsiino-dyfuziini protsesy v systemakh "metal–gaz". Lviv, Lviv Polytechnic National University (2009), (in Ukrainian).
dc.relation.referencesen[16] Kostrobij P. P., Markovych B. M., Tokarchuk M. V. Generalized diffusion equation with nonlocality of space-time. Memory function modelling. Condens. Matter Phys. 23 (2), 23003 (2020).
dc.rights.holder© Національний університет “Львівська політехніка”, 2021
dc.subjectнерівноважний статистичний оператор Зубарєва
dc.subjectрівняння дифузії типу Кеттано
dc.subjectдробові похідниі
dc.subjectnonequilibrium statistical operator Zubarev
dc.subjectCattaneo-type diffusion equation
dc.subjectfractional derivatives
dc.titleMicroscopic theory of the influence of dipole superparamagnetics (type hβ − CDhFeSO4ii) on current flow in semiconductor layered structures (type GaSe, InSe)
dc.title.alternativeМікроскопічна теорія впливу дипольних суперпарамагнетиків (типу hβ − CDhFeSO4ii) на струмопроходження у напівпровідникових шаруватих структурах (типу GaSe, InSe)
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2021v8n1_Kostrobij_P_P-Microscopic_theory_of_89-105.pdf
Size:
1.82 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2021v8n1_Kostrobij_P_P-Microscopic_theory_of_89-105__COVER.png
Size:
450.09 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.9 KB
Format:
Plain Text
Description: