Modeling of the effect of carbon dioxide desorption on carbon monoxide oxidation process on platinum catalyst surface

dc.citation.epage33
dc.citation.issue1
dc.citation.journalTitleMathematical Modeling and Computing
dc.citation.spage27
dc.citation.volume5
dc.contributor.affiliationНаціональний університет "Львівська політехніка"
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКостробій, П.
dc.contributor.authorРижа, І.
dc.contributor.authorГнатів, Б.
dc.contributor.authorKostrobij, P.
dc.contributor.authorRyzha, I.
dc.contributor.authorHnativ, B.
dc.coverage.placenameLviv
dc.date.accessioned2019-05-07T14:01:59Z
dc.date.available2019-05-07T14:01:59Z
dc.date.created2018-01-15
dc.date.issued2018-01-15
dc.description.abstractДослiджено двовимiрну математичну модель окиснення монооксиду вуглецю (СО) на поверхнi платинового каталiзатора (Pt) згiдно з механiзмом Лангмюра–Гiншелвуда. Враховано впливи структурних змiн каталiтичної поверхнi, температури пiдкладу та десорбцiї продукту реакцiї (CO2). Показано, що врахування скiнченностi десорбцiї CO2 незначно впливає як на хiд реакцiї окиснення, так i на область стiйкостi реакцiї.
dc.description.abstractA two-dimensional mathematical model for carbon monoxide (CO) oxidation on the platinum (Pt) catalyst surface is investigated according to the Langmuir–Hinshelwood (LH) mechanism. The effects of structural changes of the catalytic surface, the substrate temperature and desorption of the product of reaction (CO2) are taken into account. It is shown that taking into account the finiteness of CO2 desorption, both the course of oxidation reaction and the stability region are only slightly affected
dc.format.extent27-33
dc.format.pages7
dc.identifier.citationKostrobij P. Modeling of the effect of carbon dioxide desorption on carbon monoxide oxidation process on platinum catalyst surface / P. Kostrobij, I. Ryzha, B. Hnativ // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 1. — P. 27–33.
dc.identifier.citationenKostrobij P. Modeling of the effect of carbon dioxide desorption on carbon monoxide oxidation process on platinum catalyst surface / P. Kostrobij, I. Ryzha, B. Hnativ // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 1. — P. 27–33.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/44897
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 1 (5), 2018
dc.relation.references[1] Dicke J., ErichsenP., Wolff J., RotermundH.H. Reflection anisotropy microscopy: improved set-up and applications to CO oxidation on platinum. Surf. Sci. 462, 90–102 (2000).
dc.relation.references[2] BaxterR. J., HuP. Insight into why the Langmuir–Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116 (11), 4379–4381 (2002).
dc.relation.references[3] von OertzenA., RotermundH.H., NettesheimS. Diffusion of carbon monoxide and oxygen on Pt(110): experiments performed with the PEEM. Surf. Sci. 311 (3), 322–330 (1994).
dc.relation.references[4] PatchettA. J., Meissen F., EngelW., BradshawA.M., ImbihlR. The anatomy of reaction diffusion fronts in the catalytic oxidation of carbon monoxide on platinum (110). Surf. Sci. 454 (1), 341–346 (2000).
dc.relation.references[5] KelloggG. L. Direct observations of the (1 × 2) surface reconstruction on the Pt(110) plane. Phys. Rev. Lett. 55, 2168–2171 (1985).
dc.relation.references[6] GritschT., CoulmanD., BehmR. J., ErtlG. Mechanism of the CO-induced (1×2) → (1×1) structural transformation of Pt(110). Phys. Rev. Lett. 63, 1086–1089 (1989).
dc.relation.references[7] ImbihlR., Ladas S., ErtlG. The CO-induced (1×2) ↔ (1×1) phase transition of Pt(110) studied by LEED and work function measurements. Surf. Sci. 206, L903–L912 (1988).
dc.relation.references[8] KrischerK., EiswirthM., ErtlG. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992).
dc.relation.references[9] B¨arM., EiswirthM., RotermundH.H., ErtlG. Solitary-wave phenomena in an excitable surface-reaction. Phys. Rev. Lett. 69 (6), 945–948 (1992).
dc.relation.references[10] CisternasY., Holmes P., Kevrekidis I.G., LiX. CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. J. Chem. Phys. 118 (7), 3312–3328 (2003).
dc.relation.references[11] Bzovska I. S., Mryglod I.M. Surface patterns in catalytic carbon monoxide oxidation reaction. Ukr. J. Phys. 61 (2), 134–142 (2016).
dc.relation.references[12] PedersenT.M., Xue LiW., HammerB. Structure and activity of oxidized Pt(110) and α-PtO2. Phys. Chem. Chem. Phys. 8 (13), 1566–1574 (2006).
dc.relation.references[13] Ryzha I., MatseliukhM. Carbon monoxide oxidation on the Pt-catalyst: modelling and stability. Math. Model. Comput. 4 (1), 96–106 (2017).
dc.relation.references[14] ConnorsK.A. Chemical Kinetics: The Study of Reaction Rates in Solution. New York, VCH Publishers (1990).
dc.relation.references[15] SuchorskiY. Private comunication.
dc.relation.referencesen[1] Dicke J., ErichsenP., Wolff J., RotermundH.H. Reflection anisotropy microscopy: improved set-up and applications to CO oxidation on platinum. Surf. Sci. 462, 90–102 (2000).
dc.relation.referencesen[2] BaxterR. J., HuP. Insight into why the Langmuir–Hinshelwood mechanism is generally preferred. J. Chem. Phys. 116 (11), 4379–4381 (2002).
dc.relation.referencesen[3] von OertzenA., RotermundH.H., NettesheimS. Diffusion of carbon monoxide and oxygen on Pt(110): experiments performed with the PEEM. Surf. Sci. 311 (3), 322–330 (1994).
dc.relation.referencesen[4] PatchettA. J., Meissen F., EngelW., BradshawA.M., ImbihlR. The anatomy of reaction diffusion fronts in the catalytic oxidation of carbon monoxide on platinum (110). Surf. Sci. 454 (1), 341–346 (2000).
dc.relation.referencesen[5] KelloggG. L. Direct observations of the (1 × 2) surface reconstruction on the Pt(110) plane. Phys. Rev. Lett. 55, 2168–2171 (1985).
dc.relation.referencesen[6] GritschT., CoulmanD., BehmR. J., ErtlG. Mechanism of the CO-induced (1×2) → (1×1) structural transformation of Pt(110). Phys. Rev. Lett. 63, 1086–1089 (1989).
dc.relation.referencesen[7] ImbihlR., Ladas S., ErtlG. The CO-induced (1×2) ↔ (1×1) phase transition of Pt(110) studied by LEED and work function measurements. Surf. Sci. 206, L903–L912 (1988).
dc.relation.referencesen[8] KrischerK., EiswirthM., ErtlG. Oscillatory CO oxidation on Pt(110): Modeling of temporal selforganization. J. Chem. Phys. 96 (12), 9161–9172 (1992).
dc.relation.referencesen[9] B¨arM., EiswirthM., RotermundH.H., ErtlG. Solitary-wave phenomena in an excitable surface-reaction. Phys. Rev. Lett. 69 (6), 945–948 (1992).
dc.relation.referencesen[10] CisternasY., Holmes P., Kevrekidis I.G., LiX. CO oxidation on thin Pt crystals: Temperature slaving and the derivation of lumped models. J. Chem. Phys. 118 (7), 3312–3328 (2003).
dc.relation.referencesen[11] Bzovska I. S., Mryglod I.M. Surface patterns in catalytic carbon monoxide oxidation reaction. Ukr. J. Phys. 61 (2), 134–142 (2016).
dc.relation.referencesen[12] PedersenT.M., Xue LiW., HammerB. Structure and activity of oxidized Pt(110) and α-PtO2. Phys. Chem. Chem. Phys. 8 (13), 1566–1574 (2006).
dc.relation.referencesen[13] Ryzha I., MatseliukhM. Carbon monoxide oxidation on the Pt-catalyst: modelling and stability. Math. Model. Comput. 4 (1), 96–106 (2017).
dc.relation.referencesen[14] ConnorsK.A. Chemical Kinetics: The Study of Reaction Rates in Solution. New York, VCH Publishers (1990).
dc.relation.referencesen[15] SuchorskiY. Private comunication.
dc.rights.holder© 2018 Lviv Polytechnic National University CMM IAPMM NASU
dc.rights.holder© 2018 Lviv Polytechnic National University CMM IAPMM NASU
dc.subjectкаталiтична реакцiя окиснення
dc.subjectреакцiйно-дифузiйна модель
dc.subjectма- тематичне моделювання реакцiйно-дифузiйних процесiв
dc.subjectreaction of catalytic oxidation
dc.subjectreaction-diffusion model
dc.subjectmathematical modeling of reaction-diffusion processes
dc.subject.udc538.9
dc.titleModeling of the effect of carbon dioxide desorption on carbon monoxide oxidation process on platinum catalyst surface
dc.title.alternativeМоделювання впливу десорбції діоксиду вуглецю на процес оксидації монооксиду вуглецю на поверхні Pt-каталізатора
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2018v5n1_Kostrobij_P-Modeling_of_the_effect_27-33.pdf
Size:
2.05 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2018v5n1_Kostrobij_P-Modeling_of_the_effect_27-33__COVER.png
Size:
427.1 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.01 KB
Format:
Plain Text
Description: