Фізико-математичні науки. – 2013. – №768

Permanent URI for this collectionhttps://ena.lpnu.ua/handle/ntb/22719

Вісник Національного університету "Львівська політехніка"

У Віснику публікуються результати оригінальних наукових досліджень з різних розділів математики, фізики та прикладних аспектів цих наук. Публікуються також оглядові статті з нових перспективних напрямів досліджень та роботи з історії і методології фундаментальних наук. Для наукових співробітників, викладачів вищих навчальних закладів, інженерів, аспірантів.

Вісник Національного університету «Львівська політехніка» : [збірник наукових праць] / Міністерство освіти і науки України, Національний університет «Львівська політехніка». – Львів : Видавництво Львівської політехніки, 2013. – № 768 : Фізико-математичні науки / [відповідальний редактор П. І. Каленюк]. – 132 с. : іл.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Початково-нелокальна задача для факторизованого рівняння із частинними похідними
    (Видавництво Львівської політехніки, 2013) Симотюк, М. М.; Савка, І. Я.
    Встановлено однозначну розв'язність початково-нелокальної задачі для факторизованого рівняння із частинними похідними для майже всіх (стосовно міри Лебега) векторів, складених із коефіцієнтів факторизації. Установлена однозначная разрешимость начально-нелокальной задачи для факторизованного уравнения с частными производными для почти всех (относительно меры Лебега) векторов, составленных из коэффициентов факторизации. We established the correct solvability of initial-nonlocal boundary value problem for factorized partial differential equations for almost all (with respect to Lebesgue measure) values of coefficients of factorization.
  • Thumbnail Image
    Item
    Задача Діріхле-Неймана для лінійних гіперболічних рівнянь другого порядку у смузі
    (Видавництво Львівської політехніки, 2013) Репетило, С. М.
    Для лінійних гіперболічних рівнянь другого порядку зі сталими коефіцієнтами у смузі досліджено однозначну розв'язність задачі з умовами Діріхле-Неймана за часовою змінною та умовами періодичності або майже періодичності за просторовою координатою. Для линейных гиперболических уравнений второго порядка с постоянными коэффи¬циентами в полосе исследовано однозначную разрешимость задачи с условиями Дирихле-Неймана по временной переменной и условиями периодичности или почти периодичности по пространственной координате. Для уравнения свободных колебаний струны в полосе также исследовано трехточечную задачу по временной переменной с условиями Дирихле или Неймана в узлах интерполяции без дополнительных условий по пространственной координате. Установлены условия однозначной разрешимости рассмотренных задач и конструктивно построены их решения. Для оценок снизу малых знаменателей, возникших при построении решений исследуемых задач, использовано метрический подход. Для рівняння вільних коливань струни у смузі також досліджено триточкову задачу за часовою змінною з умовами Діріхле або Неймана у вузлах інтерполяції без додаткових умов за просторовою координатою. Встановлено умови однозначної розв'язності розглянутих задач та конструктивно побудовано їхні розв'язки. Для оцінок знизу малих знаменників, що виникли під час побудови розв'язків досліджуваних задач, використано метричний підхід. We investigate the condition for the unique solvability in a strip of the problem with Dirichlet-Neumann conditions with respect to time variable and conditions periodicity or almost periodicity with respect to spatial coordinate for second order linear hyperbolic equations with constant coefficients. For the equation of free vibrations of the string in the strip also investi¬gated three-point problem with respect to time variable with Dirichlet or Neumann conditions at the interpolation nodes without additional conditions with respect to spatial coordinate. For the considered problems the conditions of the unique solvability are established and its solutions are structurally constructed. For estimations from below of small denominators that appeared during construction of solutions study tasks the metric approach is used.
  • Thumbnail Image
    Item
    Міра множини рівня розв’язків диференціальних рівнянь зі сталими коефіцієнтами і знакосталими правими частинами
    (Видавництво Львівської політехніки, 2013) Ільків, В. С.; Магеровська, Т. В.; Нитребич, 3. М.
    Знайдено оцінку міри множини рівня функції, яка на деякому відрізку є розв'язком неоднорідного звичайного диференціального рівняння першого або другого порядку зі сталими коефіцієнтами та відділеною від нуля правою частиною. Ця оцінка узагальнює результат відомої леми Пяртлі та інші відомі оцінки. Вивчено властивості та доведено екстремальність знайдених нерівностей. Получена оценка меры множества уровня функции, являющейся на некотором отрезке решением неоднородного обыкновенного дифференциального уравнения первого или второго порядка с постоянными коэффициентами и отделенной от нуля правой частью. Эта оценка обобщает результат известной леммы Пяртли и другие известные оценки. Изучены свойства и доказана экстремальность полученных неравенств. We have found an estimate of measure of level set of the function which is on a certain segment is a solution of an inhomogeneous ordinary differential equation of first or second order with constant coefficients and isolated from zero right-hand side. This estimate generalizes the result of the known Piartly lemma as well as other known estimates. We study properties and prove the extremeness of the found inequalities.