Вісники та науково-технічні збірники, журнали

Permanent URI for this communityhttps://ena.lpnu.ua/handle/ntb/12

Browse

Search Results

Now showing 1 - 10 of 14
  • Thumbnail Image
    Item
    Evaluation of Natural Gas Saving Measures in Public Educational Institutions
    (Видавництво Львівської політехніки, 2021-06-01) Пашкевич, Володимир; Фурдас, Юрій; Крайовський, Володимир; Желих, Василь; Pashkevich, Volodymyr; Furdas, Yuriy; Craiovsky, Volodymyr; Zhelykh, Vasyl; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    У статті проаналізовано відомості витрати газу за періоди опалювання і підтверджено, що для фактичних температур зовнішнього повітря спостерігається зменшення витрати газу. Були визначені необхідні теплові навантаження і витрати газу для забезпечення необхідної температури внутрішнього повітря в приміщеннях навчальних корпусів при запропонованому режимі економії газу за рахунок пониження температури повітря в приміщеннях, так званий економний режим роботи котельні. Визначено теоретичну економію газу від пониження температурного режиму. Для підвищення точності експерименту порівняння кількості спожитого газу проводилось в розрізі робочих і неробочих періодів доби. На основі цих досліджень варто зазначити, побудований фактичний графік можна використовувати для визначення фактичної економії газу в реальних умовах.
  • Thumbnail Image
    Item
    Air quality monitoring in a selected classroom
    (Видавництво Львівської політехніки, 2022-03-03) Капало, П.; Возняк, О. Т.; Желих, В. М.; Клименко, Г. М.; Миронюк, Х. В.; Kapalo, Peter; Voznyak, Orest; Zhelykh, Vasyl; Klymenko, Hanna; Myroniuk, Khrystyna; Технічний університет Кошице; Національний університет “Львівська політехніка”; Technical University of Kosice; Lviv Polytechnic National University
    Під час дослідження “Експериментальне визначення оптимальної кількості повітря у вибраному приміщенні в Україні на основі вимірювань концентрації вуглекислого газу” було проведено експериментальне вимірювання у вибраній навчальній аудиторії України. Мета експериментального вимірювання – визначити зміну температури повітря, відносної вологості та концентрації вуглекислого газу під час навчального процесу. Потім за кривими концентрації вуглекислого газу можна розрахувати необхідну інтенсивність вентиляції у приміщенні. У статті викладено результати вимірювання температури повітря та концентрації вуглекислого газу в приміщенні, а також визначення реакції людей у приміщенні на якість повітря. Низка досліджень підтверджують, що якість повітря у навчальних аудиторіях істотно впливає на здоров’я та успішність учнів і вчителів. Відповідно до Указу 527/2007 [1], приміщення, які використовують для навчання дітей та молоді, повинні опалюватися так, щоб забезпечити температуру не менше ніж 20 °С у приміщеннях, де учні працюють чотири години і більше. Для забезпечення повітрообміну від 20 до 30 м3/год на учня необхідна вентиляція. Згідно з українським стандартом ДБН V.2.2-3: 2018, мінімальна температура повітря – 18 °С і повітрообмін 20 м3/год на одну людину. Можна припустити, що якби в класі був прилад для вимірювання концентрації вуглекислого газу, який би подавав акустичний сигнал після досягнення значення 1000 ppm, то приміщення почали би провітрювати. Однак часто люди в класі настільки зайняті навчальним процесом, що помічають погіршення якості повітря лише після того, як покинуть кімнату, вийдуть у коридор.
  • Thumbnail Image
    Item
    Alternative heat systems for modular buildings
    (Видавництво Львівської політехніки, 2022-03-03) Желих, В. М.; Фурдас, Ю. В.; Адамский, М.; Гузик, Д. В.; Цізда, А. Є.; Zhelykh, Vasyl; Furdas, Yurii; Adamski, Mariusz; Guzyk, Dmytro; Tsizda, Andriy; Національний університет “Львівська політехніка”; Білостоцький технологічний університет; Національний університет “Полтавська політехніка імені Юрія Кондратюка”; Lviv Polytechnic National University; Technical University of Bialystok; National University “Yuri Kondratyuk Poltava Polytechnic”
    У наш час надзвичайно актуальною залишається проблема енергоощадного будівництва. Застосування альтернативних джерел енергії для теплозабезпечення будівель і споруд є одним зі шляхів вирішення проблеми раціонального використання паливно-енергетичних ресурсів. У цій статті розглянуто ефективні методи використання сонячної енергії за допомогою термосифонних сонячних колекторів, інтегрованих у зовнішні огороджувальні конструкції модульного будинку. Результати досліджень показали, що для ефективної роботи термосифонного колектора площа вентиляційних отворів повинна бути в межах 0,005–0,06 м 2. Питання зниження витрат на паливно-енергетичні ресурси та зменшення впливу на навколишнє середовище, а також термінів реалізації проєктів сьогодні більш ніж актуальні для будівельних компаній і знайшли відображення у сучасному “модульному будівництві”. Тому Україні потрібно було б звернути увагу на цю сучасну будівельну систему як один зі способів вирішення проблем нестачі нових та розселення старих житлових площ. Важливим питанням під час розроблення модульних будинків залишається проблема підтримання теплового стану в приміщеннях. Потрібно враховувати можливість автономного забезпечення таких об’єктів енергоресурсами. Це можливо у разі використання альтернативних видів енергії, таких як сонячна та геотермальна енергія, а за можливості – енергія вітру та біогазу. Отже, нині технології модульного будівництва потребують комплексного підходу до вирішення питань енергоощадності та забезпечення необхідних параметрів мікроклімату в таких будинках
  • Thumbnail Image
    Item
    Energy saving of modular buildings with the help of biogas technologies
    (Видавництво Львівської політехніки, 2021-11-11) Желих, В. М.; Фурдас, Ю. В.; Шаповал, С. П.; Савченко, О. О.; Шепітчак, В. Б.; Zhelykh, Vasyl; Furdas, Yurii; Shapoval, Stepan; Savchenko, Olena; Shepitchak, Volodymyr; Національний університет “Львівська політехніка”; Lviv Polytechnick National University
    Україна має значні обсяги земельних ресурсів для сільського господарства та здатна забезпечити своє населення не тільки їжею, але і сировиною для біоенергетики. Як сировину в біоенергетиці можна використати відходи та сільськогосподарські залишки, які утворюються під час збирання сільськогоспо-дарських культур та під час їх переробки, зокрема солома злакових культур, зернобобових культур, насіння кукурудзи та соняшнику, лушпиння соняшнику, м’якоть цукрових буряків, опале листя тощо. При виробництві газоподібного палива із опалого листя утворюється не тільки джерело енергії – біогаз, але й високоякісні добрива, які можна використовувати для власних потреб, чи продавати фермерським господарствам. Процес виробництва біогазу відбувається у біореакторах, конструкції яких досить різноманітні і відрізняються за формою, матеріалом, способами змішування та нагрівання біомаси, обсягом переробки сировини. Представлено графік теплових ємностей та розподілу теплових потоків у біореакторі. Наведено залежності для визначення теплових потоків плоских і циліндричних поверхонь. Наведено сучасний стан використання опалого листя дерев. Запропоновано метод використання за допомогою анаеробного бродіння. Розглянуто основні фактори, що впливають на утворення метану. Представлено розрахунок виробництва біогазу. Визначено продуктивність біореактора залежно від температури сировини та часу гідравлічного бродіння.
  • Thumbnail Image
    Item
    Assessment of energy security of higher education institutions
    (Видавництво Львівської політехніки, 2021-06-06) Пашкевич, В. З.; Малашкін, М. А.; Желих, В. М.; Лозинський, О. Ю.; Pashkevych, Volodymyr; Malashkin, Maksym; Zhelykh, Vasyl; Lozynskyy, Orest; Національний університет “Львівська політехніка”; Українська енергетична асоціація; Lviv Polytechnic National University; Ukraine Energy Association
    Сьогодні відсутні чіткі та ґрунтовні методики оцінки енергетичної безпеки підприємства. Ці невирішені питання не дають змогу на відповідному рівні управляти безпекою підприємства, що негативно позначається на результатах його господарювання. Ця проблематика особливо актуальна для закладів вищої освіти, що фінансуються з державного бюджету. Визначення рівня енергетичної безпеки на основі прийнятої загальної системи комплексних показників є однією з умов сталого соціально-економічного та матеріально-технічного розвитку закладів вищої освіти та повинно посилити увагу керівників ЗВО до проблем, пов’язаних із підвищенням енергетичної безпеки. Нагальна необхідність створення ефективної системи управління процесами енергоспоживання та енергозбереження в галузі освіти та важливість результатів оцінювання енергетичної безпеки для забезпечення сталого розвитку закладів вищої освіти свідчить про об’єктивну необхідність проведення таких обстежень. У роботі висвітлено обстеження енергетичного господарства Національного університету “Львівська політехніка” з метою оцінки енергетичної безпеки, удосконалення стратегії енерговикористання та розроблення заходів з підвищення енергетичної безпеки університету. В основу запропонованого методу покладено методику визначення 46 показників, за якими сформовано п’ять критеріїв енергетичної безпеки зокрема такі як: “Енергоефективність”, “Енергонезалежність”, “Енергозабезпеченість”, “Надійність теплопостачання”, “Економічна стабільність”. За згаданими показниками обчислено значення кожного з перехованих вище критеріїв і проаналізовано їх рівні. На основі цього аналізу запропоновано засади підвищення енергетичної безпеки університету.
  • Thumbnail Image
    Item
    Energy efficient solar heat supply systems for buildings and structures
    (Видавництво Львівської політехніки, 2021-06-06) Желих, В. М.; Касинець, М. Є.; Миронюк, Х. В.; Марущак, У. Д.; Гулай, Б. І.; Zhelykh, Vasyl; Kasynets, Mariana; Myroniuk, Khrystyna; Marushchak, Uliana; Gulai, Bogdan; Національний університет “Львівська політехніка”; Lviv Politechnic National University
    Сьогодні енергетика України потребує значного споживання традиційних джерел енергії (нафти, газу, вугілля, атомної енергії). Проте їх використання пов’язане із виникненням певних труднощів, серед яких теплове, хімічне, радіоактивне забруднення навколишнього середовища та вичерпність їх запасів. У праці вирішено актуальну проблему підвищення ефективності систем сонячного теплопостачання з плоскими сонячними колекторами. Проаналізовано потенціал сонячної енергетики та існуючих систем сонячного теплопостачання. Невідновні джерела енергії мають достатньо великий потенціал для забезпечення потрібного життєвого рівня людей. Встановлено, що для отримання необхідної кількості нетрадиційної енергії для енергозабезпечення жителів міст потрібно використати лише 5 % зайнятої ними площі. Проаналізовано переваги та недоліки різних конструкцій сонячних колекторів, методи їх досліджень. Актуальним дослідженням є вдосконалення наявних сонячних колекторів та систем сонячного теплопостачання для їх максимальної інтеграції в традиційні системи теплопостачання та широке застосування на практиці. Подано аналіз основних напрямів підвищення ефективності сонячних колекторів та систем сонячного теплопостачання загалом. Отримано удосконалену систему сонячного теплопостачання із запропонованою конструкцією сонячного колектора та встановлено його температурні характеристики залежно від інтенсивності надходження сонячної енрегії. Встановлено, що температура води на виході з експериментального сонячного колектора до обідньої пори дня була на ≈4–5 % вища, ніж температура води на вході в сонячну установку та температура води в баку-акумуляторі сонячного колектора. Тому запропоновану конструкцію можна використовувати для споживачів під час проектування басейнів, у системах з джерелом енергії, яке дублюється
  • Thumbnail Image
    Item
    Examination of the thermal efficiency of the solar collector integrated into the light transparent building facade
    (Видавництво Львівської політехніки, 2020-02-10) Шаповал, С. П.; Желих, В. М.; Венгрин, І. І.; Миронюк, Х. В.; Генсецький, М. П.; Shapoval, Stepan; Zhelykh, Vasyl; Venhryn, Iryna; Myroniuk, Khrystyna; Gensetskyi, Mykola; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Описано перспективність розвитку напрямку сонячної енергетики в Україні. Інтерес до ефективного використання сонячного випромінювання сонячними колекторами обґрунтовує актуальність і доцільність досліджень з проблеми використання в них такої енергії. Проаналізовано, що сонячна енергетика залишається найперспективнішим напрямком для генерації теплової енергії внаслідок: встановленого обсягу надходження сонячного випромінювання на територію України та зношеність технологічного обладнання, що працють на традиційному органічному паливі. Окрім цього, враховуючи тенденцію побудови скляних фасадів у галузі будівництва, в праці запропонованого сонячний колектор інтегрований в світлопрозорий фасад будівлі з метою економії площі, на яку встановлюються установки сонячних колекторів та збереження викопних видів палива. За інтенсивності імітованого сонячного випромінювання 900 Вт/м2, що потрапляло на поглинаючу поверхню сонячного колектора, температура на виході із сонячного колектора досягала 22,9 ºС. Порівнюючи зміни миттєвої потужності сонячного колектора Qск, Вт/м2 встановлено, що на 60 хв експерименту за інтенсивності імітованого сонячного випромінювання 900 Вт/м2, вона була більшою за 250 Вт/м2. Коефіцієнт корисної дії експериментального сонячного колектора в режимі прямотечії теплоносія в системі за інтенсивності імітованого сонячного випромінювання 900 Вт/м2 досягав ≈33 %. Встановлено, що запропонований сонячний колектор за інтенсивностей, що відповідатимуть потужності сонячного випромінювання в літній період року, в рeжимі прямотечії теплоносія через конструкцію соячного колектора є ефективним джерелом низькопотенційного тепло- постачання. Перспективним напрямом подальших досліджень залишається встановлення ефективності такого колектора за інших інтенсивностей імітованого сонячного випромінювання та за інших режимів роботи теплоносія через конструкцію сонячного колектора в системі сонячного теплопостачання.
  • Thumbnail Image
    Item
    Research on the aerodynamic characteristics of zero-energy house modular type
    (Видавництво Львівської політехніки, 2020-02-10) Желих, В. М.; Фурдас, Ю. В.; Козак, Х. Р.; Ребман, М. Р.; Zhelykh, Vasyl; Furdas, Yurii; Kozak, Khrystyna; Rebman, Maksym; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Вирішення завдань аеродинаміки будівель є важливим інструментом для визначення впливів вітрових потоків на будівлю з урахуванням рельєфу місцевості. При зміні напрямків обтікання будинку змінюється характер вітрового потоку, який спричинений різною геометрією форм будинку та рельєфу, тому виникає необхідність проведення спеціальних досліджень в аеродинамічній трубі. Аеродинамічні дослідження дають можливість визначити вплив рельєфу на розподіл та значення аеродинамічних коефіцієнтів на поверхні моделі будинку, а також вплив конструкції моделі на розподіл тисків на поверхні настелення. Оскільки питання відбору тепла вітровим потоком по поверхні енергоефективних і пасивних будинків є недостатньо вивчене, було проведено ряд експериментальних досліджень щодо обтікання будівлі повітряним потоком під різними кутами . Експериментальні дослідження проводили на моделі будівлі, виконаній у масштабі 1:16, в аеродинамічній трубі в лабораторії Національного університету “Львівська політехніка”. Проаналізувавши отримані результати, можна стверджувати, що на навітряній області плоскої поверхні виникає зона додатних значень аеродинамічного коефіцієнта з хвилеподібним збільшенням при наближенні до навітряного фасаду моделі будинку. Для напрямку набігаючого потоку 0° в області навітряного фасаду моделі значення k поступово зростають у міру віддалення від поверхні настелювання і дещо зменшуються при наближенні до даху моделі. Було побудовано епюри розподілу аеродинамічних коефіцієнтів, які дають можливість вибору раціональної орієнтації будинку під час його проектування. Крім того, отримано, що на підвітряному фасаді моделі значення аеродинамічних коефіцієнтів від'ємні і знаходяться в діапазоні -0,16…-0,45 для кута набігаючого потоку α = 0°. Ці значення менші за величини, які регламентуються нормами для підвітряного фасаду будинку. А на навітряній області даху, аеродинамічні коефіцієнти набувають широкого діапазону значень від 0,63 до 1,21, що свідчить про різку зміну вітрових тисків на поверхні даху.
  • Thumbnail Image
    Item
    Experimental research of performance characteristics for polypropylene pre-insulated pipes
    (Видавництво Львівської політехніки, 2020-02-10) Желих, В. М.; Козак, Х. Р.; Пізнак, Б. І.; Фурдас, Ю. В.; Стадник, А. В.; Zhelykh, Vasyl; Kozak, Khrystyna; Piznak, Bogdan; Furdas, Yurii; Stadnyk, Andrii; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    У сучасних умовах стрімкого розвитку технологій із різким зростанням енергопотреби необхідним фактором економічно ефективного функціонування промислових підприємств і об'єктів теплоенергетики є раціональне використання теплової енергії. Тоді як до 70 % тепла втрачається при її транспортуванні до споживача, завдання пошуку енергоощадних рішень є надзвичайно актуальним. Застосування сучасної якісної теплової ізоляції трубопроводів теплової мережі є ефективним та надзвичайно важливим методом, який дозволяє скоротити втрати теплоти на 30 %. Теплову ізоляцію передбачають для лінійних ділянок трубопроводів теплових мереж, арматури, фланцевих з'єднань, компенсаторів і опор труб для надземної, підземної канальної і безканальної прокладки. Найважливішим показником якості утеплювача є його теплопровідність. Проте, внаслідок складності та динамічності теплових процесів стандартизовані, відносно точні методи вимірювань теплопро- відності будівельних матеріалів потребують значних затрат часу на виготовлення спеціальних зразків досліджуваного матеріалу, проведення випробувань, а для їх реалізації – дорогого і громіздкого обладнання. Якість усіх теплоізоляційних матеріалів трубопроводів необхідно контролювати не тільки при початковій сертифікації, а й під час випуску на виробництві та за необхідності – і при постачанні на будівельні майданчики. Є достатньо багато варіантів утеплення мережевих трубопроводів: мінеральне та склово- локно, спінений каучук, полімербетон тощо. Одним з популярних утеплювачів є пінополіуретан. До переваг теплопроводів з ППУ-ізоляцією зараховують низький коефіцієнт теплопровідності ППУ (0,032–0,04 Вт/(м·К)), технологічність виготовлення і монтажу теплопроводів, довговічність за дотримання вимог монтажу та експлуатації. Ннаведено результати експериментальних досліджень щодо визначення тепло-технічних характеристик попередньо ізольованих труб. Згідно з даними, отриманими експериментальним шляхом, коефіцієнт теплопровідності гладкого зразка пінополіуретану із закритими порами становить 0,031 Вт/(м·К), що є високим показником та відповідає вимогам, встановленим до теплової ізоляції трубопроводів. Порівняно теплотехнічні характеристики популярних сьогодні теплоізоляційних матеріалів, які використовують для теплових мереж – мінеральної вати та пінополіуретану. З порівняння зрозуміло, що пінополіуретан має кращі теплотехнічні характеристики, а також є безпечним для людини та може використовуватися у житлових приміщеннях.
  • Thumbnail Image
    Item
    Energy potential of crop waste in heat supply systems
    (Видавництво Львівської політехніки, 2019-03-23) Желих, В. М.; Савченко, О. О.; Фурдас, Ю. В.; Козак, Х. Р.; Миронюк, Х. В.; Zhelykh, Vasyl; Savchenko, Olena; Furdas, Yuriy; Kozak, Khrystyna; Myroniuk, Khrystyna; Національний університет “Львівська політехніка”; Lviv Polytechnic National University
    Однією з найперспективніших складових відновлюваної енергетики України є біоенергетика. Вона основана на використанні біомаси, яка слугує вихідною сировиною для виготовлення палива у твердому, рідкому та газоподібному станах. До біомаси зараховують відходи та залишки сільського господарства, відходи деревини у лісовому господарстві, деревообробній та целюлозно-паперовій промисловості, енергетичні культури, органічну частину промислових та побутових відходів. Україна володіє великими площами земельних ресурсів, має сприятливі ґрунтово-кліматологічні умови та розвинене сільське господарство, тому може успішно розвивати біоенергетику, основану на рослинній біомасі. Найдоцільніше відходи рослинництва переробляти на біогаз, який дасть змогу сільськогосподарським підприємствам отримати додаткове джерело енергії та забезпечить виробництво високоякісних органічних добрив. Крім того, виробництво біогазу не шкідливе для навколишнього середовища, оскільки не спричиняє додаткову ремісію парникового вуглекислого газу і зменшує кількість органічних відходів. Біогаз зручний у використанні для енергетичних потреб, знаходить застосування на децентралізованих блочних теплоцентралях для електро- і теплопостачання, може подаватися в газотранспортну мережу та використовуватися як моторне паливо для автомобілів. У статті запропоновано методику визначення кількості біогазу та проведено аналітичні дослідження метаноутворення у побутовій біогазовій установці з відходів рослинництва (це, зокрема, кукурудзяні стебла, трава, листя винограду, листя цукрових буряків, солома зернових культур, сіно червоної конюшини, солома жита). На підставі результатів аналітичних досліджень встановлено, що із запропонованих видів біомаси найбільше біогазу утворюється з трави, соломи зернових та кукурудзи.