Skip navigation

putin IS MURDERER

Please use this identifier to cite or link to this item: https://ena.lpnu.ua/handle/ntb/45929
Title: Investigations to digitizing of the gyro oscillation swing by a line camera
Other Titles: Дослідження оцифрування коливань гіроскопа за допомогою лінійної камери
Authors: Хегер, В.
Тревого, І.
Лопатін, Я.
Heger, W.
Trevoho, I.
Lopatin, Y.
Affiliation: Вища школа Нойбранденбурга
Національний університет “Львівська політехніка”
Neubrandenburg University of Applied Sciences
Lviv Polytechnic National University
Bibliographic description (Ukraine): Heger W. Investigations to digitizing of the gyro oscillation swing by a line camera / W. Heger, I. Trevoho, Y. Lopatin // Сучасні досягнення геодезичної науки та виробництва. — Львів : Видавництво Львівської політехніки, 2019. — № 2(38). — С. 45–53.
Bibliographic description (International): Heger W. Investigations to digitizing of the gyro oscillation swing by a line camera / W. Heger, I. Trevoho, Y. Lopatin // Modern achievements of geodesic science and industry. — Vydavnytstvo Lvivskoi politekhniky, 2019. — No 2(38). — P. 45–53.
Is part of: Сучасні досягнення геодезичної науки та виробництва, 2(38), 2019
Modern achievements of geodesic science and industry, 2(38), 2019
Journal/Collection: Сучасні досягнення геодезичної науки та виробництва
Issue: 2(38)
Issue Date: 28-Feb-2019
Publisher: Видавництво Львівської політехніки
Place of the edition/event: Львів
UDC: 528.022.11
Keywords: гіроскоп
лінійна камера
оцифрування
автоматизація вимірювань
gyroscope
line camera
digitizing
automation of measurements
Number of pages: 9
Page range: 45-53
Start page: 45
End page: 53
Abstract: The purpose of this work is to develop a technology for an automatic measurement process for determining the azimuth by the “Gyromax AK-2M” gyroscope. The accuracy of determining the principal values should be higher than by manual procedure. A method for digitizing the gyro oscillations using a camera with a linear sensor and programming code is proposed in this work. The working possibility of the line camera from Coptonix™ company was investigated, as well as the possibility of its connection to a single board computer Raspberry Pi 3B for data transmission and processing. The possibility of using the Python 3.0 programming language for these tasks was tested. Methodology. To implement this project, an integrated approach was used, using devices such as a camera with a linear sensor, a single board computer and facility, that simulates gyroscope oscillations. This research includes investigations in digitizing of data, computing the azimuth values and automatizing these processes. For automatized data computation were used the same two methods as in the regular manual measurements – Turning point method (TPM) and Pass-Through method (PTM). Results. The result of this work is an automated oscillation measurement system, that can be applied in gyroscopes. The system includes developed software, which connects the user to the linear camera and processing computer, records the necessary data, transfers them to the client-computer and calculates the necessary values. For the convenience of using the program by other users, the program is provided with a graphical user interface. The result of the program is a file with the extension XML, which contains data about measurements. Scientific novelty and practical significance. The new method of digitizing the gyroscope oscillations is proposed in this work. Application of a line camera and a single board computer for the digitization of measurements opens a lot of possibilities for improving the automation processes of the geodetic devices, which could increase the accuracy of measurement and decrease its duration. By developing this method of digitization, it is possible to start production of an improved version of gyro add-on GYROMAX AK-2M.
URI: https://ena.lpnu.ua/handle/ntb/45929
Copyright owner: © Національний університет “Львівська політехніка”, 2019
©Західне геодезичне товариство, 2019
URL for reference material: https://www.coptonix.com/_en/html/usblinecamera.html
https://toshiba.semiconstorage.com/eu/product/sensor/linear-sensor.html
https://riverbankcomputing.com/software/pyqt/intro
https://toshiba.semicon-storage.com/eu/product/sensor/linear-sensor.html
References (Ukraine): Caspary W. F. (1987). Gyroscope technology, status and trends. Applied Geodesy. Lecture Notes in Earth
Sciences, vol. 12. Springer, Berlin, Heidelberg.
Caspary W. F., Schwintzer P. (1981). An extension of
Chronometric Gyroscope Observation Methods. The
Canadian Surveyor (35), pp. 364–372.
Coptonix Line Camera. [Electronic resource]. Access
mode https://www.coptonix.com/_en/html/usblinecamera.html
von Fabeck W. (1980) Kreiselgeräte. Vogel-Verlag, Würzburg
Golovanov V. A. (2004) Giroskopicheskoye
oriyentirovanye: Uchebnyy posobnik. [Gyroscopic
orientation. Training manual] St. Petersburg Mining
University, St. Petersburg, 92 p.
Kovtun V., Heger W., Trevoho I., Chaplynska L. (2010).
Geoprofile, : 4, 34–40.
Linear Image Sensors. [Electronic resource].
Access mode: https://toshiba.semiconstorage.com/eu/product/sensor/linear-sensor.html
PyQt application framework. [Electronic resource].
Access mode: (https://riverbankcomputing.com/software/pyqt/intro).
Schwender H. R. (1964). Beobachtungsmethoden für
Aufsatzkreisel. Schweizerische Zeitschrift für
Vermessung, Kulturtechnik und Photogrammetrie (62), pp. 365–375.
Shestov S. (1989). Giroskop na nebe i zemle. [Gyroscope in heaven and on Earth]. Moscow, 70 p.
Thomas T. L. (1982). The Six Methods of Finding North Using a Suspended Gyroscope. Survey Review (26), pp. 225–235.
Vanicek P. (1972). Dynamical Aspects of the Suspended
Gyrocompass. The Canadian Surveyor (26), pp. 77–83.
Voronkov N., Ashymov N. (1980). Giroskopicheskoye oriyentirovaniye [Gyroscopic orientation]. Moscow: Nedra, 224 p.
Ziegler H. (1962). Kreiselprobleme / Gyrodynamics: Symposion Celerina, 20. Bis 23.
References (International): Caspary W. F. (1987). Gyroscope technology, status and trends. Applied Geodesy. Lecture Notes in Earth Sciences, vol. 12. Springer, Berlin, Heidelberg.
Caspary W. F., Schwintzer P. (1981). An extension of Chronometrie Gyroscope Observation Methods. The Canadian Surveyor (35), pp. 364-372.
Coptonix Line Camera. [Electronic resource]. Access mode https://www.coptonix.com/_en/html/usblinecamera.html
von Fabeck W. (1980) Kreiselgeräte. Vogel-Verlag, Würzburg
Golovanov V. A. (2004) Giroskopicheskoye oriyentirovanye: Uchebnyy posobnik. [Gyroscopic orientation. Training manual] St. Petersburg Mining University, St. Petersburg, 92 p.
Kovtun V., Heger W., Trevoho I., Chaplynska L. (2010). Geoprofile, № 4, pp. 34-40.
Linear Image Sensors. [Electronic resource]. Access mode: https://toshiba.semicon-storage.com/eu/product/sensor/linear-sensor.html
PyQt application framework. [Electronic resource]. Access mode: (https://riverbankcomputing.com/software/pyqt/intro).
Schwender H. R. (1964). Beobachtungsmethoden für Aufsatzkreisel. Schweizerische Zeitschrift für Vermessung, Kulturtechnik und Photogrammetrie (62), pp. 365-375.
Shestov S. (1989). Giroskop na nebe i zemle. [Gyroscope in heaven and on Earth]. Moscow, 70 p.
Thomas T. L. (1982). The Six Methods of Finding North Using a Suspended Gyroscope. Survey Review (26), pp. 225-235.
Vanicek P. (1972). Dynamical Aspects of the Suspended Gyrocompass. The Canadian Surveyor (26), pp. 77-83.
Voronkov N., Ashymov N. (1980). Giroskopicheskoye ori yentirovaniye [Gyroscopic orientation]. Moscow: Nedra, 224 p.
Ziegler H. (1962). Kreiselprobleme / Gyrodynamics: Symposion Celerina, 20. Bis 23.
Content type: Article
Appears in Collections:Сучасні досягнення геодезичної науки та виробництва. – 2019. – Випуск 2(38)

Files in This Item:
File Description SizeFormat 
2019n2_38__Heger_W-Investigations_to_digitizing_45-53.pdf995.73 kBAdobe PDFView/Open
2019n2_38__Heger_W-Investigations_to_digitizing_45-53__COVER.png1.46 MBimage/pngView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.