On the null one-way solution to Maxwell equations in the Kerr space-time
dc.citation.epage | 206 | |
dc.citation.issue | 2 | |
dc.citation.spage | 201 | |
dc.contributor.affiliation | Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Pidstryhach Institute for Applied Problems for Mechanics and Mathematics | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Пелих, В. | |
dc.contributor.author | Тайстра, Ю. | |
dc.contributor.author | Pelykh, V. | |
dc.contributor.author | Taistra, Y. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-02-27T08:51:43Z | |
dc.date.available | 2020-02-27T08:51:43Z | |
dc.date.created | 2018-02-26 | |
dc.date.issued | 2018-02-26 | |
dc.description.abstract | Розглянуто рівняння Максвелла з умовою однонапрямленого ізотропного поля в просторі Керра. Для кожного ЗДР, отриманого після застосування методу відокремлення змінних, накладено деякі граничні умови. Це приводить до обмеженості константи відокремлення ω та до фіксованості азимутального числа m значеннями ±1. Розглянута задача показує фізичну застосовність особливих розв’язків і становить інтерес для астрофізики. | |
dc.description.abstract | We consider Maxwell equations with the null one-way condition in the Kerr space-time. For each ODE equation, which is obtained by using the method of separable variables, we impose some boundary conditions. This is resulting in the boundedness of the separation constant ω and in fixing the azimuthal number m by the values ±1. The problem considered demonstrates physical applicability of singular solutions and presents an interest for astrophysics. | |
dc.format.extent | 201-206 | |
dc.format.pages | 6 | |
dc.identifier.citation | Pelykh V. On the null one-way solution to Maxwell equations in the Kerr space-time / V. Pelykh, Y. Taistra // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 201–206. | |
dc.identifier.citationen | Pelykh V. On the null one-way solution to Maxwell equations in the Kerr space-time / V. Pelykh, Y. Taistra // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 201–206. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46128 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 2 (5), 2018 | |
dc.relation.references | 1. Teukolsky S. A. Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations. The Astrophysical Journal. 185, 635–647 (1973). | |
dc.relation.references | 2. Fiziev P. P. Classes of exact solutions to the Teukolsky master equation. Classical and Quantum Gravity. 27 (13), 135001 (2010). | |
dc.relation.references | 3. Borissov R. S., Fiziev P. P. Exact solutions of Teukolsky master equation with continious spectrum. Bulg. J. Phys. 37, 065–089 (2010); arXiv:0903.3617v3 [gr-qc] (2010). | |
dc.relation.references | 4. Pelykh V. O., Taistra Y. V. A Class of General Solutions of the Maxwell Equations in the Kerr Space-Time. J. Math. Sci. 229 (2), 162–173 (2018). | |
dc.relation.references | 5. Torres del Castillo G. P. 3-D spinors, spin-weighted functions and their applications. Vol. 20 of Progress in mathematical physics. New York, Springer Science+Business Media, LLC (2003). | |
dc.relation.references | 6. Visser M. The Kerr spacetime: A Brief introduction. In Kerr Fest: Black Holes in Astrophysics, General Relativity and Quantum Gravity Christchurch. New Zealand (2004), (2007). | |
dc.relation.references | 7. O’Neill B. The geometry of Kerr black holes. Wellesley, Massachusetts, Reprint of the A. K. Peters (1995). | |
dc.relation.references | 8. Pelykh V. O., Taistra Y. V. Null one-way fields in the Kerr spacetime. Ukr. Journ. of Phys. 62 (11), 1007–1013 (2017). | |
dc.relation.references | 9. Penrose R., Rindler W. Spinors and space-time. Two-spinor calculus and relativistic fields. Vol. 1. Cambridge University Press (1984). | |
dc.relation.references | 10. KinnersleyW. Type D vacuum metrics. J. Math. Phys. 10, 1195–1203 (1969). | |
dc.relation.references | 11. Stewart J. M. Advanced general relativity. Cambridge University Press (1991). | |
dc.relation.references | 12. O’Donnell P. Introduction to 2-Spinors in General Relativity. World Scientific (2003). | |
dc.relation.references | 13. Pelykh V. O., Taistra Y. V. Solution with Separable Variables for Null One-way Maxwell Field in Kerr Space-time. Acta Phys. Polon. Supp. 10, 387–390 (2017). | |
dc.relation.references | 14. Starobinskii A. A., Churilov S. M. Amplification of electromagnetic and gravitational waves scattered by a rotating “black hole”. Zh. Eksp. Teor. Fiz. 65, 3–11 (1973). | |
dc.relation.references | 15. Chandrasekhar S. The mathematical theory of black holes. New York, Oxford Univ. Press (1983). | |
dc.relation.references | 16. Pelykh V., Taistra Y. A class of exact solutions of Maxwell equations in Kerr space-time and their physical manifestations. In The third Zeldovich meeting SNAUPS-2018, 23–27 April 2018, Minsk, Belarus. Institute of Physics NAS of Belarus (2018). | |
dc.relation.references | 17. Gnedin N. I., Dymnikova I. G. Rotation of the plane of polarization of a photon in space-time of the D type according to the Petrov classification. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki. 94, 26–31 (1988), (in Russian). | |
dc.relation.referencesen | 1. Teukolsky S. A. Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations. The Astrophysical Journal. 185, 635–647 (1973). | |
dc.relation.referencesen | 2. Fiziev P. P. Classes of exact solutions to the Teukolsky master equation. Classical and Quantum Gravity. 27 (13), 135001 (2010). | |
dc.relation.referencesen | 3. Borissov R. S., Fiziev P. P. Exact solutions of Teukolsky master equation with continious spectrum. Bulg. J. Phys. 37, 065–089 (2010); arXiv:0903.3617v3 [gr-qc] (2010). | |
dc.relation.referencesen | 4. Pelykh V. O., Taistra Y. V. A Class of General Solutions of the Maxwell Equations in the Kerr Space-Time. J. Math. Sci. 229 (2), 162–173 (2018). | |
dc.relation.referencesen | 5. Torres del Castillo G. P. 3-D spinors, spin-weighted functions and their applications. Vol. 20 of Progress in mathematical physics. New York, Springer Science+Business Media, LLC (2003). | |
dc.relation.referencesen | 6. Visser M. The Kerr spacetime: A Brief introduction. In Kerr Fest: Black Holes in Astrophysics, General Relativity and Quantum Gravity Christchurch. New Zealand (2004), (2007). | |
dc.relation.referencesen | 7. O’Neill B. The geometry of Kerr black holes. Wellesley, Massachusetts, Reprint of the A. K. Peters (1995). | |
dc.relation.referencesen | 8. Pelykh V. O., Taistra Y. V. Null one-way fields in the Kerr spacetime. Ukr. Journ. of Phys. 62 (11), 1007–1013 (2017). | |
dc.relation.referencesen | 9. Penrose R., Rindler W. Spinors and space-time. Two-spinor calculus and relativistic fields. Vol. 1. Cambridge University Press (1984). | |
dc.relation.referencesen | 10. KinnersleyW. Type D vacuum metrics. J. Math. Phys. 10, 1195–1203 (1969). | |
dc.relation.referencesen | 11. Stewart J. M. Advanced general relativity. Cambridge University Press (1991). | |
dc.relation.referencesen | 12. O’Donnell P. Introduction to 2-Spinors in General Relativity. World Scientific (2003). | |
dc.relation.referencesen | 13. Pelykh V. O., Taistra Y. V. Solution with Separable Variables for Null One-way Maxwell Field in Kerr Space-time. Acta Phys. Polon. Supp. 10, 387–390 (2017). | |
dc.relation.referencesen | 14. Starobinskii A. A., Churilov S. M. Amplification of electromagnetic and gravitational waves scattered by a rotating "black hole". Zh. Eksp. Teor. Fiz. 65, 3–11 (1973). | |
dc.relation.referencesen | 15. Chandrasekhar S. The mathematical theory of black holes. New York, Oxford Univ. Press (1983). | |
dc.relation.referencesen | 16. Pelykh V., Taistra Y. A class of exact solutions of Maxwell equations in Kerr space-time and their physical manifestations. In The third Zeldovich meeting SNAUPS-2018, 23–27 April 2018, Minsk, Belarus. Institute of Physics NAS of Belarus (2018). | |
dc.relation.referencesen | 17. Gnedin N. I., Dymnikova I. G. Rotation of the plane of polarization of a photon in space-time of the D type according to the Petrov classification. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki. 94, 26–31 (1988), (in Russian). | |
dc.rights.holder | CMM IAPMM NASU | |
dc.rights.holder | © 2018 Lviv Polytechnic National University | |
dc.subject | алгебраїчно спеціальне поле | |
dc.subject | рівняння Максвелла | |
dc.subject | простір-час Керра | |
dc.subject | algebraically special field | |
dc.subject | Maxwell equations | |
dc.subject | Kerr space-time | |
dc.subject.udc | 537.876 | |
dc.subject.udc | 517.927.2 | |
dc.subject.udc | 517.955 | |
dc.title | On the null one-way solution to Maxwell equations in the Kerr space-time | |
dc.title.alternative | Про однонапрямлений ізотропний розв’язок рівнянь Максвелла у просторі Керра | |
dc.type | Article |
Files
License bundle
1 - 1 of 1