On the null one-way solution to Maxwell equations in the Kerr space-time

dc.citation.epage206
dc.citation.issue2
dc.citation.spage201
dc.contributor.affiliationІнститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationPidstryhach Institute for Applied Problems for Mechanics and Mathematics
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorПелих, В.
dc.contributor.authorТайстра, Ю.
dc.contributor.authorPelykh, V.
dc.contributor.authorTaistra, Y.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2020-02-27T08:51:43Z
dc.date.available2020-02-27T08:51:43Z
dc.date.created2018-02-26
dc.date.issued2018-02-26
dc.description.abstractРозглянуто рівняння Максвелла з умовою однонапрямленого ізотропного поля в просторі Керра. Для кожного ЗДР, отриманого після застосування методу відокремлення змінних, накладено деякі граничні умови. Це приводить до обмеженості константи відокремлення ω та до фіксованості азимутального числа m значеннями ±1. Розглянута задача показує фізичну застосовність особливих розв’язків і становить інтерес для астрофізики.
dc.description.abstractWe consider Maxwell equations with the null one-way condition in the Kerr space-time. For each ODE equation, which is obtained by using the method of separable variables, we impose some boundary conditions. This is resulting in the boundedness of the separation constant ω and in fixing the azimuthal number m by the values ±1. The problem considered demonstrates physical applicability of singular solutions and presents an interest for astrophysics.
dc.format.extent201-206
dc.format.pages6
dc.identifier.citationPelykh V. On the null one-way solution to Maxwell equations in the Kerr space-time / V. Pelykh, Y. Taistra // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 201–206.
dc.identifier.citationenPelykh V. On the null one-way solution to Maxwell equations in the Kerr space-time / V. Pelykh, Y. Taistra // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 2. — P. 201–206.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/46128
dc.language.isoen
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofMathematical Modeling and Computing, 2 (5), 2018
dc.relation.references1. Teukolsky S. A. Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations. The Astrophysical Journal. 185, 635–647 (1973).
dc.relation.references2. Fiziev P. P. Classes of exact solutions to the Teukolsky master equation. Classical and Quantum Gravity. 27 (13), 135001 (2010).
dc.relation.references3. Borissov R. S., Fiziev P. P. Exact solutions of Teukolsky master equation with continious spectrum. Bulg. J. Phys. 37, 065–089 (2010); arXiv:0903.3617v3 [gr-qc] (2010).
dc.relation.references4. Pelykh V. O., Taistra Y. V. A Class of General Solutions of the Maxwell Equations in the Kerr Space-Time. J. Math. Sci. 229 (2), 162–173 (2018).
dc.relation.references5. Torres del Castillo G. P. 3-D spinors, spin-weighted functions and their applications. Vol. 20 of Progress in mathematical physics. New York, Springer Science+Business Media, LLC (2003).
dc.relation.references6. Visser M. The Kerr spacetime: A Brief introduction. In Kerr Fest: Black Holes in Astrophysics, General Relativity and Quantum Gravity Christchurch. New Zealand (2004), (2007).
dc.relation.references7. O’Neill B. The geometry of Kerr black holes. Wellesley, Massachusetts, Reprint of the A. K. Peters (1995).
dc.relation.references8. Pelykh V. O., Taistra Y. V. Null one-way fields in the Kerr spacetime. Ukr. Journ. of Phys. 62 (11), 1007–1013 (2017).
dc.relation.references9. Penrose R., Rindler W. Spinors and space-time. Two-spinor calculus and relativistic fields. Vol. 1. Cambridge University Press (1984).
dc.relation.references10. KinnersleyW. Type D vacuum metrics. J. Math. Phys. 10, 1195–1203 (1969).
dc.relation.references11. Stewart J. M. Advanced general relativity. Cambridge University Press (1991).
dc.relation.references12. O’Donnell P. Introduction to 2-Spinors in General Relativity. World Scientific (2003).
dc.relation.references13. Pelykh V. O., Taistra Y. V. Solution with Separable Variables for Null One-way Maxwell Field in Kerr Space-time. Acta Phys. Polon. Supp. 10, 387–390 (2017).
dc.relation.references14. Starobinskii A. A., Churilov S. M. Amplification of electromagnetic and gravitational waves scattered by a rotating “black hole”. Zh. Eksp. Teor. Fiz. 65, 3–11 (1973).
dc.relation.references15. Chandrasekhar S. The mathematical theory of black holes. New York, Oxford Univ. Press (1983).
dc.relation.references16. Pelykh V., Taistra Y. A class of exact solutions of Maxwell equations in Kerr space-time and their physical manifestations. In The third Zeldovich meeting SNAUPS-2018, 23–27 April 2018, Minsk, Belarus. Institute of Physics NAS of Belarus (2018).
dc.relation.references17. Gnedin N. I., Dymnikova I. G. Rotation of the plane of polarization of a photon in space-time of the D type according to the Petrov classification. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki. 94, 26–31 (1988), (in Russian).
dc.relation.referencesen1. Teukolsky S. A. Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations. The Astrophysical Journal. 185, 635–647 (1973).
dc.relation.referencesen2. Fiziev P. P. Classes of exact solutions to the Teukolsky master equation. Classical and Quantum Gravity. 27 (13), 135001 (2010).
dc.relation.referencesen3. Borissov R. S., Fiziev P. P. Exact solutions of Teukolsky master equation with continious spectrum. Bulg. J. Phys. 37, 065–089 (2010); arXiv:0903.3617v3 [gr-qc] (2010).
dc.relation.referencesen4. Pelykh V. O., Taistra Y. V. A Class of General Solutions of the Maxwell Equations in the Kerr Space-Time. J. Math. Sci. 229 (2), 162–173 (2018).
dc.relation.referencesen5. Torres del Castillo G. P. 3-D spinors, spin-weighted functions and their applications. Vol. 20 of Progress in mathematical physics. New York, Springer Science+Business Media, LLC (2003).
dc.relation.referencesen6. Visser M. The Kerr spacetime: A Brief introduction. In Kerr Fest: Black Holes in Astrophysics, General Relativity and Quantum Gravity Christchurch. New Zealand (2004), (2007).
dc.relation.referencesen7. O’Neill B. The geometry of Kerr black holes. Wellesley, Massachusetts, Reprint of the A. K. Peters (1995).
dc.relation.referencesen8. Pelykh V. O., Taistra Y. V. Null one-way fields in the Kerr spacetime. Ukr. Journ. of Phys. 62 (11), 1007–1013 (2017).
dc.relation.referencesen9. Penrose R., Rindler W. Spinors and space-time. Two-spinor calculus and relativistic fields. Vol. 1. Cambridge University Press (1984).
dc.relation.referencesen10. KinnersleyW. Type D vacuum metrics. J. Math. Phys. 10, 1195–1203 (1969).
dc.relation.referencesen11. Stewart J. M. Advanced general relativity. Cambridge University Press (1991).
dc.relation.referencesen12. O’Donnell P. Introduction to 2-Spinors in General Relativity. World Scientific (2003).
dc.relation.referencesen13. Pelykh V. O., Taistra Y. V. Solution with Separable Variables for Null One-way Maxwell Field in Kerr Space-time. Acta Phys. Polon. Supp. 10, 387–390 (2017).
dc.relation.referencesen14. Starobinskii A. A., Churilov S. M. Amplification of electromagnetic and gravitational waves scattered by a rotating "black hole". Zh. Eksp. Teor. Fiz. 65, 3–11 (1973).
dc.relation.referencesen15. Chandrasekhar S. The mathematical theory of black holes. New York, Oxford Univ. Press (1983).
dc.relation.referencesen16. Pelykh V., Taistra Y. A class of exact solutions of Maxwell equations in Kerr space-time and their physical manifestations. In The third Zeldovich meeting SNAUPS-2018, 23–27 April 2018, Minsk, Belarus. Institute of Physics NAS of Belarus (2018).
dc.relation.referencesen17. Gnedin N. I., Dymnikova I. G. Rotation of the plane of polarization of a photon in space-time of the D type according to the Petrov classification. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki. 94, 26–31 (1988), (in Russian).
dc.rights.holderCMM IAPMM NASU
dc.rights.holder© 2018 Lviv Polytechnic National University
dc.subjectалгебраїчно спеціальне поле
dc.subjectрівняння Максвелла
dc.subjectпростір-час Керра
dc.subjectalgebraically special field
dc.subjectMaxwell equations
dc.subjectKerr space-time
dc.subject.udc537.876
dc.subject.udc517.927.2
dc.subject.udc517.955
dc.titleOn the null one-way solution to Maxwell equations in the Kerr space-time
dc.title.alternativeПро однонапрямлений ізотропний розв’язок рівнянь Максвелла у просторі Керра
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2018v5n2_Pelykh_V-On_the_null_one_way_solution_201-206.pdf
Size:
727.56 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2018v5n2_Pelykh_V-On_the_null_one_way_solution_201-206__COVER.png
Size:
447.21 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.98 KB
Format:
Plain Text
Description: