Interpolation integral continued fraction with twofold node
dc.citation.epage | 13 | |
dc.citation.issue | 1 | |
dc.citation.spage | 1 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Прикарпатський національний університет імені Василя Стефаника | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Vasyl Stefanyk Precarpathian National University | |
dc.contributor.author | Демків, І. | |
dc.contributor.author | Івасюк, І. | |
dc.contributor.author | Копач, М. | |
dc.contributor.author | Demkiv, I. | |
dc.contributor.author | Ivasiuk, I. | |
dc.contributor.author | Kopach, M. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2020-02-27T09:45:14Z | |
dc.date.available | 2020-02-27T09:45:14Z | |
dc.date.created | 2019-02-26 | |
dc.date.issued | 2019-02-26 | |
dc.description.abstract | Для функціонала, заданого на континуальній множині вузлів на підставі раніше побудованого інтерполяційного інтегрального ланцюгового дробу типу Ньютона, побудовано та досліджено інтерполянт з k-им двократним вузлом. Доведено, що побудований інтегральний ланцюговий дріб буде інтерполянтом типу Ерміта. | |
dc.description.abstract | For a functional given on a continual set of nodes on the basis of the previously constructed interpolation integral continued fraction of the Newton type, an interpolant with a k-th twofold node has been constructed and investigated. It is proved that the constructed integral continued fraction is an interpolant of the Hermitian type. | |
dc.format.extent | 1-13 | |
dc.format.pages | 13 | |
dc.identifier.citation | Demkiv I. Interpolation integral continued fraction with twofold node / I. Demkiv, I. Ivasiuk, M. Kopach // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 1–13. | |
dc.identifier.citationen | Demkiv I. Interpolation integral continued fraction with twofold node / I. Demkiv, I. Ivasiuk, M. Kopach // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2019. — Vol 6. — No 1. — P. 1–13. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/46142 | |
dc.language.iso | en | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Mathematical Modeling and Computing, 1 (6), 2019 | |
dc.relation.references | 1. Mykhal’chukB.R. Interpolation of nonlinear functionals by integral continued fractions. Ukr. Math. J. 51 (3), 406–418 (1999). | |
dc.relation.references | 2. MakarovV. L., KhlobystovV.V., Mykhal’chukB.R. Interpolational Integral Continued Fractions. Ukr. Math. J. 55 (4), 576–587 (2003). | |
dc.relation.references | 3. MakarovV. L., Demkiv I. I., Mykhal’chukB.R. Necessary and sufficient conditions of interpolation functional polynomial existence on continual sets of knots. Dopov. Nac. akad. nauk Ukr. 7, 7 (2003). | |
dc.relation.references | 4. MakarovV. L., Demkiv I. I. New class of Interpolation integral continued fractions. Dopov. Nac. akad. nauk Ukr. 11, 17 (2008). | |
dc.relation.references | 5. MakarovV. L., Demkiv I. I. Relation between interpolating integral continued fractions and interpolating branched continued fractions. J. Math. Sci. 165 (2), 171–180 (2010). | |
dc.relation.references | 6. MakarovV. L., KhlobystovV.V., Demkiv I. I. Hermitian functional polynomials in space Q[0, 1]. Dopov. Nac. akad. nauk Ukr. 8, 27 (2007). | |
dc.relation.referencesen | 1. Mykhal’chukB.R. Interpolation of nonlinear functionals by integral continued fractions. Ukr. Math. J. 51 (3), 406–418 (1999). | |
dc.relation.referencesen | 2. MakarovV. L., KhlobystovV.V., Mykhal’chukB.R. Interpolational Integral Continued Fractions. Ukr. Math. J. 55 (4), 576–587 (2003). | |
dc.relation.referencesen | 3. MakarovV. L., Demkiv I. I., Mykhal’chukB.R. Necessary and sufficient conditions of interpolation functional polynomial existence on continual sets of knots. Dopov. Nac. akad. nauk Ukr. 7, 7 (2003). | |
dc.relation.referencesen | 4. MakarovV. L., Demkiv I. I. New class of Interpolation integral continued fractions. Dopov. Nac. akad. nauk Ukr. 11, 17 (2008). | |
dc.relation.referencesen | 5. MakarovV. L., Demkiv I. I. Relation between interpolating integral continued fractions and interpolating branched continued fractions. J. Math. Sci. 165 (2), 171–180 (2010). | |
dc.relation.referencesen | 6. MakarovV. L., KhlobystovV.V., Demkiv I. I. Hermitian functional polynomials in space Q[0, 1]. Dopov. Nac. akad. nauk Ukr. 8, 27 (2007). | |
dc.rights.holder | CMM IAPMM NAS | |
dc.rights.holder | © 2019 Lviv Polytechnic National University | |
dc.subject | неперервний інтерполяційний дріб Ньютона | |
dc.subject | двократний вузол неперервного дробу | |
dc.subject | Ермітовий інтерполянт | |
dc.subject | Newton type interpolation continued fraction | |
dc.subject | twofold node of continued fraction | |
dc.subject | Hermitian type interpolant | |
dc.subject.udc | 519.65 | |
dc.title | Interpolation integral continued fraction with twofold node | |
dc.title.alternative | Інтерполяційний інтегральний ланцюговий дріб з двократним вузлом | |
dc.type | Article |
Files
License bundle
1 - 1 of 1